

Compliance with RoHS Directive

FEATURES

1. Nominal operating power: High sensitivity of 50mW

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 50 mW (minimum operating power of 32 mW) has been achieved.

2. Compact size 15.0(L) \times 7.4(W) \times 8.2(H) .591(L) \times .291(W) \times .323(H)

ORDERING INFORMATION

New pin layout (LT type) added. Ultra high sensitivity realized at 50 mW nominal operating power

3. High contact reliability

High contact reliability is achieved by the use of gold-clad twin crossbar contacts, low-gas formation materials, mold sealing the coil section, and by controlling organic gas in the coil. *We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA). *SX relays designed for low level

loads are also available. 4. Outstanding surge resistance.

Surge breakdown voltage between open contacts: 1,500 V 10×160 µsec. (FCC part 68)

Surge breakdown voltage between contact and coil: 2,500 V 2×10 µsec. (Telcordia)

5. Low thermal electromotive force (approx. 0.3 $\mu\text{V})$

The structure of the mold-sealed body block of the coil section achieves nominal operating power of 50 mW and high sensitivity, along with low thermal electromotive force, reduced to approximately 0.3μ V.

TX-S RELAYS

6. A range of surface-mount types is also available.

SA: Low-profile surface-mount terminal type SL: High connection reliability surfacemount terminal type SS: Space saving surface-mount terminal type

7. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

- 1. Communications (XDSL, Transmission)
- 2. Measurement
- 3. Security
- 4. Home appliances, and audio/visual equipment
- 5. Automotive equipment
- 6. Medical equipment

	TXS	2		-	-		-
Contact arrangement 2: 2 Form C							
Surface-mount availability Nil: Standard PC board terminal type or self-clinching terminal type SA: SA type SL: SL type SS: SS type		_					
Operating function Nil: Single side stable L: 1 coil latching L2: 2 coil latching LT: 2 coil latching			-				
Terminal shape Nil: Standard PC board terminal or surface-mount terminal H: Self-clinching terminal				-			
Nominal coil voltage (DC) 1.5, 3, 4.5, 6, 9, 12, 24V							
Contact material Nil: Standard contact (Ag+Au clad) 1: AgPd contact (low level load); AgPd+Au clad (stationary), AgPd (movable)						-	
Packing style Nil: Tube packing X: Tape and reel (picked from 1/3/4/5-pin side) Z: Tape and reel packing (picked from the 8/9/10/12-pin side)							-

TYPES

1. Standard PC board terminal

Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
voltage	Part No.	Part No.	Part No.	Part No.
1.5V DC	TXS2-1.5V	TXS2-L-1.5V	TXS2-L2-1.5V	TXS2-LT-1.5V
3V DC	TXS2-3V	TXS2-L-3V	TXS2-L2-3V	TXS2-LT-3V
4.5V DC	TXS2-4.5V	TXS2-L-4.5V	TXS2-L2-4.5V	TXS2-LT-4.5V
6V DC	TXS2-6V	TXS2-L-6V	TXS2-L2-6V	TXS2-LT-6V
9V DC	TXS2-9V	TXS2-L-9V	TXS2-L2-9V	TXS2-LT-9V
12V DC	TXS2-12V	TXS2-L-12V	TXS2-L2-12V	TXS2-LT-12V
24V DC	TXS2-24V	TXS2-L-24V	TXS2-L2-24V	TXS2-LT-24V
	voltage 1.5V DC 3V DC 4.5V DC 6V DC 9V DC 12V DC	voltage Part No. 1.5V DC TXS2-1.5V 3V DC TXS2-3V 4.5V DC TXS2-4.5V 6V DC TXS2-6V 9V DC TXS2-9V 12V DC TXS2-12V	voltage Part No. Part No. 1.5V DC TXS2-1.5V TXS2-L-1.5V 3V DC TXS2-3V TXS2-L-3V 4.5V DC TXS2-4.5V TXS2-L-4.5V 6V DC TXS2-6V TXS2-L-6V 9V DC TXS2-9V TXS2-L-9V 12V DC TXS2-12V TXS2-L-12V	voltage Part No. Part No. Part No. 1.5V DC TXS2-1.5V TXS2-L-1.5V TXS2-L2-1.5V 3V DC TXS2-3V TXS2-L-3V TXS2-L2-3V 4.5V DC TXS2-4.5V TXS2-L-4.5V TXS2-L2-4.5V 6V DC TXS2-6V TXS2-L-6V TXS2-L2-6V 9V DC TXS2-9V TXS2-L-9V TXS2-L2-9V 12V DC TXS2-12V TXS2-L-12V TXS2-L2-12V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs. Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2. Self-clinching terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TXS2-H-1.5V	TXS2-L-H-1.5V	TXS2-L2-H-1.5V	TXS2-LT-H-1.5V
	3V DC	TXS2-H-3V	TXS2-L-H-3V	TXS2-L2-H-3V	TXS2-LT-H-3V
	4.5V DC	TXS2-H-4.5V	TXS2-L-H-4.5V	TXS2-L2-H-4.5V	TXS2-LT-H-4.5V
2 Form C	6V DC	TXS2-H-6V	TXS2-L-H-6V	TXS2-L2-H-6V	TXS2-LT-H-6V
	9V DC	TXS2-H-9V	TXS2-L-H-9V	TXS2-L2-H-9V	TXS2-LT-H-9V
	12V DC	TXS2-H-12V	TXS2-L-H-12V	TXS2-L2-H-12V	TXS2-LT-H-12V
	24V DC	TXS2-H-24V	TXS2-L-H-24V	TXS2-L2-H-24V	TXS2-LT-H-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs. Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

3. Surface-mount terminal

1) Tube packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TXS2SD-1.5V	TXS2SD-L-1.5V	TXS2SD-L2-1.5V	TXS2S -LT-1.5V
	3V DC	TXS2S□-3V	TXS2S□-L-3V	TXS2SD-L2-3V	TXS2S□-LT-3V
	4.5V DC	TXS2SD-4.5V	TXS2SD-L-4.5V	TXS2SD-L2-4.5V	TXS2S□-LT-4.5V
2 Form C	6V DC	TXS2S□-6V	TXS2S□-L-6V	TXS2SD-L2-6V	TXS2S□-LT-6V
	9V DC	TXS2S□-9V	TXS2SD-L-9V	TXS2SD-L2-9V	TXS2S□-LT-9V
	12V DC	TXS2SD-12V	TXS2SD-L-12V	TXS2SD-L2-12V	TXS2SD-LT-12V
	24V DC	TXS2SD-24V	TXS2SD-L-24V	TXS2SD-L2-24V	TXS2SD-LT-24V

 \Box : For each surface-mounted terminal identification, input the following letter. SA type: <u>A</u>, SL type: <u>L</u>, SS type: <u>S</u>

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs. Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2) Tape and reel packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TXS2SD-1.5V-Z	TXS2SL-1.5V-Z	TXS2SD-L2-1.5V-Z	TXS2SLT-1.5V-Z
	3V DC	TXS2S□-3V-Z	TXS2S□-L-3V-Z	TXS2SD-L2-3V-Z	TXS2S□-LT-3V-Z
	4.5V DC	TXS2SD-4.5V-Z	TXS2SD-L-4.5V-Z	TXS2SD-L2-4.5V-Z	TXS2S□-LT-4.5V-Z
2 Form C	6V DC	TXS2S□-6V-Z	TXS2S□-L-6V-Z	TXS2S L2-6V-Z	TXS2S□-LT-6V-Z
	9V DC	TXS2S□-9V-Z	TXS2S□-L-9V-Z	TXS2SD-L2-9V-Z	TXS2S□-LT-9V-Z
	12V DC	TXS2SD-12V-Z	TXS2SD-L-12V-Z	TXS2S L2-12V-Z	TXS2SLT-12V-Z
	24V DC	TXS2SD-24V-Z	TXS2S□-L-24V-Z	TXS2SD-L2-24V-Z	TXS2S -LT-24V-Z

☐: For each surface-mounted terminal identification, input the following letter. SA type: <u>A</u>, SL type: <u>L</u>, SS type: <u>S</u> Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs. Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. "X" type tape and reel packing (picked from 1/2/3/4-pin side) is also available. 2. Please add "-1" to the end of the part number for AgPd contacts (low level load). (Ex. TXS2SA-1.5V-1-Z)

RATING

1. Coil data 1) Single side stable

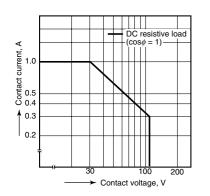
Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage (at 20°C 68°F)	
1.5V DC			33.3mA	45Ω			
3V DC			16.7mA	180Ω			
4.5V DC	80%V or less of	10%V or more of	11.1mA	405Ω	50m\//	1500/14	
6V DC	nominal voltage*	nominal voltage*	8.3mA	720Ω	50mW	501100	150%V of nominal voltage
9V DC	(Initial)	(Initial)	5.6mA	1,620Ω		nominal voltage	
12V DC			4.2mA	2,880Ω			
24V DC			2.9mA	8,229Ω	70mW		

2) 1 coil latching

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage (at 20°C 68°F)
1.5V DC			23.3mA	64.3Ω		
3V DC		80%V or less of	11.7mA	257Ω		
4.5V DC	80%V or less of		7.8mA	579Ω	0Em)//	
6V DC	nominal voltage*	nominal voltage*	5.8mA	1,029Ω	35mW	150%V of nominal voltage
9V DC	(Initial)	(Initial)	3.9mA	2,314Ω		nominal voltage
12V DC			2.9mA	4,114Ω		
24V DC			2.1mA	11,520Ω	50mW	

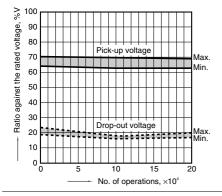
3) 2 coil latching (L2, LT)

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)		Coil resistance [±10%] (at 20°C 68°F)		Nominal operating power		Max. applied voltage (at 20°C 68°F)	
Ū.			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	(,	
1.5V DC				46.7mA	46.7mA	32.1 Ω	32.1Ω			
3V DC			23.3mA	23.3mA	129Ω	129Ω				
4.5V DC	80%V or less of	80%V or less of	15.6mA	15.6mA	289Ω	289Ω	70mW	70mW	4500/14 4	
6V DC	nominal voltage*	nominal voltage*	11.7mA	11.7mA	514Ω	514Ω	7011100	7011100	150%V of nominal voltage	
9V DC	(Initial)	(Initial)	7.8mA	7.8mA	1,157Ω	1,157Ω			nominal voltage	
12V DC]		5.8mA	5.8mA	2,057Ω	2,057Ω				
24V DC			6.3mA	6.3mA	3,840Ω	3,840Ω	150mW	150mW		

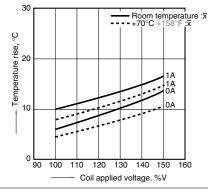

*Pulse drive (JIS C 5442-1986)

Characteristics		Item	Specifications		
	Arrangement		2 Form C		
Contact	Initial contact resista	nce, max.	Max. 100 mΩ (By voltage drop 6 V DC 1A)		
Contact	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)		
	Nominal switching ca	apacity	1 A 30 V DC (resistive load)		
	Max. switching powe	r	30 W (DC) (resistive load)		
	Max. switching voltage	je –	110V DC		
Dating	Max. switching curre	nt	1 A		
Rating	Min. switching capac	ity (Reference value)*1	10µA 10mV DC		
		Single side stable	50 mW (1.5 to 12 V DC), 70 mW (24 V DC)		
	Nominal operating power	1 coil latching	35 mW (1.5 to 12 V DC), 50 mW (24 V DC)		
	power	2 coil latching	70 mW (1.5 to 12 V DC), 150 mW (24 V DC)		
	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1min. (Detection current: 10mA)		
		Between contact and coil	1,800 Vrms for 1min. (Detection current: 10mA)		
	(initial)	Between contact sets	1,000 Vrms for 1min. (Detection current: 10mA)		
Electrical	Surge breakdown	Between open contacts	1,500 V (10×160µs) (FCC Part 68)		
characteristics	voltage (Initial)	Between contacts and coil	2,500 V (2×10µs) (Telcordia)		
	Temperature rise (at 20°C 68°F)		Max. 50°C (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)		
	Operate time [Set time] (at 20°C 68°F)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset	time] (at 20°C 68°F)	Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)		
	Shock resistance	Functional	Min. 750 m/s ² (Half-wave pulse of sine wave: 6 ms; detection time: 10µs.)		
Vechanical	SHOCK TESISIANCE	Destructive	Min. 1,000 m/s ² (Half-wave pulse of sine wave: 6 ms.)		
characteristics	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10μ s.)		
	VIDIATION TESISTANCE	Destructive	10 to 55 Hz at double amplitude of 5 mm		
Expected life	Mechanical		Min. 5×10 ⁷ (at 180 cpm)		
Expected life	Electrical		Min. 2×10 ⁵ (1 A 30 V DC resistive) (at 20 cpm)		
Conditions	Conditions for operat	tion, transport and storage*2	Ambient temperature: -40°C to +70°C -40°F to +158°F; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating speed	d (at rated load)	20 cpm		
Unit weight			Approx. 2 g .071 oz		

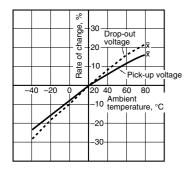
Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10mA max. level]) *2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

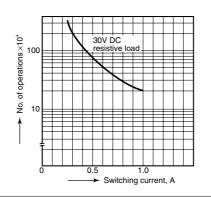

TX-S REFERENCE DATA

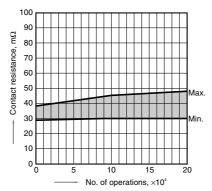
1. Maximum switching capacity

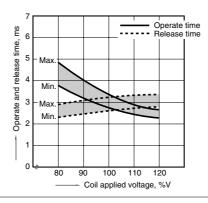


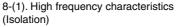
4. Electrical life (1 A 30 V DC resistive load) Tested sample: TXS2-4.5V, 6 pcs. Operating speed: 20 cpm

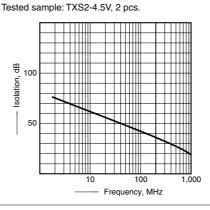

Change of pick-up and drop-out voltage

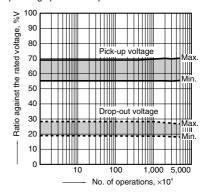

5-(2). Coil temperature rise Tested sample: TXS2-24V, 6 pcs. Point measured: Inside the coil Ambient temperature: 25°C 77°F, 70°C 158°F

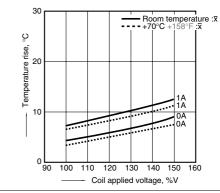

7. Ambient temperature characteristics Tested sample: TXS2-4.5V, 5 pcs.

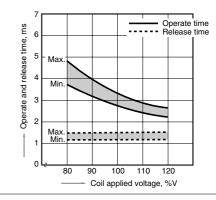




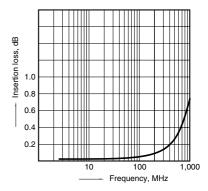

Change of contact resistance


6-(1). Operate and release time (with diode) Tested sample: TXS2-4.5V, 10 pcs.

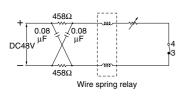


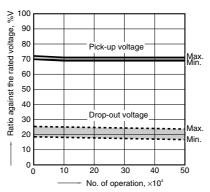

3. Mechanical life Tested sample: TXS2-4.5V, 10 pcs. Operating speed: 180 cpm

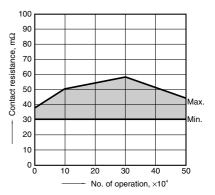
5-(1). Coil temperature rise Tested sample: TXS2-4.5V, 6 pcs. Point measured: Inside the coil Ambient temperature: 25°C 77°F, 70°C 158°F



6-(2). Operate and release time (without diode) Tested sample: TXS2-4.5V, 10 pcs.

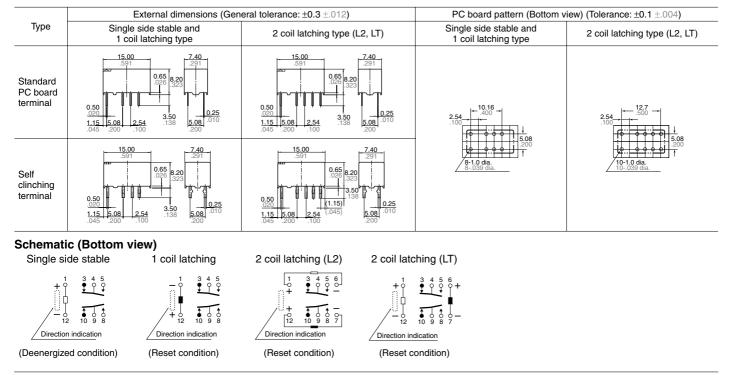

8-(2). High frequency characteristics (Insertion loss)




All Rights Reserved © COPYRIGHT Panasonic Electric Works Co., Ltd.

9-(1). Malfunctional shock (single side stable) 9-(2). Malfunctional shock (latching) 10. Thermal electromotive force Tested sample: TXS2-4.5V, 6 pcs. Tested sample: TXS2-L2-4.5V, 6 pcs. Tested sample: TXS2-4.5V, 6 pcs. 20 Deenergized condition ---- Reset state = 0.30 x 18 1000m/ 1000m/ 16 Ζ Ζ Х Х 14 Quantity 1000m/s 1000m/s 1000m/s 1000m/s 12 10 8 1000m/s 1000m/s 1000m/s 1000m/s Z z 6 X X |1000m/s² Y' 1000m/s 2 Ý 0 L 0.15 0.25 0.35 0.45 0.55 Thermal electromotive force, µV 11-(1). Influence of adjacent mounting 11-(2). Influence of adjacent mounting 11-(3). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs. Tested sample: TXS2-4.5V, 6 pcs. Tested sample: TXS2-4.5V, 6 pcs. 15 % % % ON 1 ON 1 Rate of change, Rate of change, Rate of change, 10 10 10 1 ON 1 -||-||-ON 1 5 5 5 Pick-up voltage ÖN Pick-up voltage Pick-up voltage ON ON % % % OFF Drop out voltag Drop-out voltage Drop-out voltage OFF OFF Rate of change, OFF change, Rate of change, 11 Î 1 _ 6 _5 _5 OFF Rate of OFF 🕇 10 10 OFF OFF -15 ⊾ 0 OFF 15 152 4 6 8 10 12 14 16 .079 .157 .236 .315 .394 .472 .551 .630 **2 4 6 8 10 12 14 16** .079 .157 .236 .315 .394 .472 .551 .630 2 4 .079 .157 10 12 14 0 6 8 16 ο .236 .315 .394 .472 .551 .630 Inter-relay distance *l*, mm inch Inter-relay distance *l*, mm inch Inter-relay distance *l*, mm inch 12. Pulse dialing test (35 mA 48V DC wire spring relay load) Change of pick-up and drop-out voltage Change of contact resistance Tested sample: TXS2-4.5V, 6 pcs.

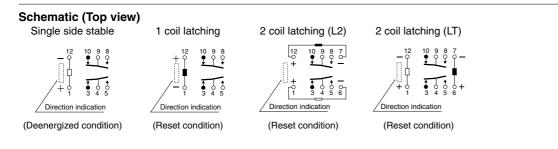
Note: Data of surface-mount type are the same as those of PC board terminal type.



DIMENSIONS (mm inch)

1. Standard PC board terminal and Self clinching terminal

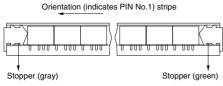
CAD Data



The CAD data of the products with a CAD Data mark can be downloaded from: http://panasonic-electric-works.net/ac

2. Surface-mount terminal

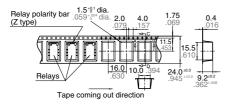
CAD Data	
----------	--


	External dimensions (Gen	eral tolerance: ±0.3 ±.012)	Suggested mounting pad (Top	view) (Tolerance: ±0.1 ±.004)
Туре	Single side stable and 1 coil latching type			2 coil latching type (L2, LT)
SA type	15 501 82 323 321 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.20	15 .591 .591 .026 .0	5.08 3.16 .1244 .124 .124 .124 .124 .124 .124 .124 .124	3.16.039
SL type	15 -591 	15 -591 -200 -200 -2	3.16 039 2.54 .124 039 10 10 10 10 10 10 10 10	3.16.03 .124 .124 .124 .124 .124 .124 .124 .100 .100 .100 .100 .100 .100 .100 .10
SS type	15 .591 .323 0.65 .020 .020 .020 .020 .020 .020 .020 .02	15 -591 -233 Max.10 -323 Max.10 -324 -344 -0.25 -344 -0.25 -026 -291±-010 -026 -200 -026 -291±-010 -200 -026 -291±-010 -025 -026 -291±-0 -025 -026 -291±-0 -025 -026 -291±-0 -025 -026 -291±-0 -025 -026 -020 -026	2.16 .039 2.54 .085 039 100 .085 039 2.54 .100 .085 039 2.54 .100 .100 .100 .100 .100 .100 .100 .10	2.16 1 200 .085.039 2.54 .000 .000 .000 .000 .000 .000 .000

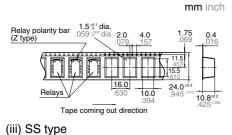
NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

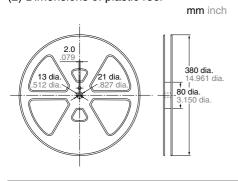


2) Tape and reel packing (surface-mount terminal type)


(1) Tape dimensions

(i) SA type

mm inch



mm inch Relay polarity bar $0.59^{+0.6}_{-0.6}$ dia. 2.0 4.0 1.75 0.4 (2 type) 157 0.69 0.16 Relays 16.0 4.0 1.75 0.4 Relays 16.0 4.0 1.75 0.4 Relays 15.5 0.4 0.016 16.0 4.0 0.016 0.016 0.016 16.0 4.0 0.016 0.016 0.016 16.0 4.0 0.016

Tape coming out direction

(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below. Chucking pressure in the direction A: 4.9 N {500gf} or less Chucking pressure in the direction B: 9.8 N {1 kgf} or less Chucking pressure in the direction C:

9.8 N {1 kgf} or less

Please chuck the portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".